News

Estimating clinical blood test results with smartwatch data

Collaborators

Clinicians and researchers have long been inspired by the potential of consumer-grade wearable sensors, such as smartwatches and smart clothing, to transform clinical care. However, to date, such technology has not resulted in many viable clinical applications – the recent ability to detect atrial fibrillation with smartwatches being a notable exception. Lukasz Kidzinski, a research associate in bioengineering, and colleagues at Stanford University have now developed machine learning models that also correlate smartwatch data with clinical lab tests, such as those that measure the amount of red blood cells.

Their studies elucidate factors that can improve the accuracy of such predictions, such as the use of personalized models versus population-level models. These findings open the door for new clinical uses for smartwatch data.

Michael Snyder, Professor and Chair of Genetics and also a faculty affiliate of the Wu Tsai Human Performance Alliance at Stanford, is the senior author.

Read the full press release.

Latest News

Runners naturally move at a pace to save energy

May 5, 2022

Runners naturally move at a pace to save energy

Do you know a female, high school track athlete?

April 17, 2022

Do you know a female, high school track athlete?

Competing in a summer or winter Olympic sport?

April 12, 2022

Competing in a summer or winter Olympic sport?

Get Engaged

Join our mailing list to receive the latest information and updates on the Wu Tsai Human Performance Alliance.